Testing variants of uncertain significance in a HEK293T model for very long-chain acyl-CoA dehydrogenase deficiency

Meena Sethuraman, BS1, Olivia D’Annibale, MPH2,3, Erik Koppes, PhD2, Al-Walid Moheen, PhD2,3, Jerry Vockley, MD, PhD1,2,3

1Division of Genetics and Genomic Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224
2Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261

Background
- Newborn screening (NBS) identifies inborn errors of metabolism. Upon identification of a positive NBS screen, DNA sequencing is used to confirm the diagnosis. [1]
- Sequencing often identifies variants of uncertain significance (VUS). Patients have different combinations of mutations, resulting in different phenotypic severity and requiring different therapeutic strategies.
- Patient fibroblast samples can be used to perform functional testing, but this is expensive, inefficient, and invasive.
- Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene. Patients with VLCADD cannot utilize energy from long fatty acid chains and present with a variety of symptoms, including hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. [2]
- VLCADD has over 300 VUS. We characterized a HEK293T ACADVL knockout model for the purpose of efficient functional testing for VUS in VLCADD.

Methods
- CRISPR/Cas9 genome editing was used to ablate the ACADVL gene in HEK293T cells with dual guide RNAs targeting exons 12-16, including the catalytic site in exon 15. Cells were flow-sorted into single wells and grown until confluent in complete DMEM.
- Genomic DNA was extracted from clones. Droplet digital PCR (ddPCR) was used to screen candidate genome-edited clones and confirm the deletion of the catalytic site.
- mRNA was isolated from A1-7 clones transfected with variant plasmids and converted to cDNA. RT-PCR was performed to determine mRNA presence.
- Western blot was used to probe for the presence of the VLCAD protein.
- Electron transfer flavoprotein (ETF) fluorescence reduction enzymatic assay to determine residual VLCAD protein enzymatic activity.

Results
Figure 1: ddPCR identified four candidate genome-edited clones with deletion of the catalytic site in exon 15.

Figure 2: Western blot of genome-edited clones confirms absence of VLCAD protein.

Table 1: Plasmids used to test variants of uncertain significance in ACADVL knockout model

<table>
<thead>
<tr>
<th>Plasmid Name</th>
<th>Mutation</th>
<th>Cell Line Origin</th>
<th>ClinVar Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACADVL-1619</td>
<td>c.1619T>C, p.Leu540Pro</td>
<td>FB671</td>
<td>Uncertain significance (not reported)</td>
</tr>
<tr>
<td>ACADVL-1707</td>
<td>c.1707_1715dup, p.Asp570_Ala572dup</td>
<td>FB671</td>
<td>Uncertain significance</td>
</tr>
<tr>
<td>ACADVL-848</td>
<td>c.848T>C, p.Val283Ala</td>
<td>FB782</td>
<td>Pathogenic (common mutation)</td>
</tr>
<tr>
<td>ACADVL-1248</td>
<td>c.1248A>C, p.Ile420Leu</td>
<td>FB782</td>
<td>Uncertain significance (not reported)</td>
</tr>
<tr>
<td>ACADVL-1217</td>
<td>c.1217A>C, p.Gln406Pro</td>
<td>FB904</td>
<td>Uncertain significance</td>
</tr>
</tbody>
</table>

Discussion
- We generated an ACADVL null HEK293T that has no residual VLCAD protein and reduced enzyme activity towards C21 and C16 substrates.
- Transfection of plasmids with variant ACADVL allows us to perform functional studies to examine variant pathogenicity without the need for invasive skin biopsies.

References